metal-organic compounds

 $\gamma = 117.972 \ (1)^{\circ}$

Z = 2

V = 1399.3 (2) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.18 \times 0.15~\text{mm}$

 $\mu = 6.08 \text{ mm}^{-3}$

T = 296 K

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(benzoato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N.N'$)lead(II) benzoic acid monosolvate

Jun Dai,^a Juan Yang^{b*} and Jiantong Li^b

^aInstitute of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China, and ^bDepartment of Physical Chemistry, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China Correspondence e-mail: yangjuan0302@yahoo.cn

Received 21 November 2010; accepted 22 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; R factor = 0.029; wR factor = 0.074; data-to-parameter ratio = 15.1.

The reaction of lead acetate, benzoic acid and 1,10phenanthroline (phen) in aqueous solution yielded the title complex, $[Pb(C_7H_5O_2)_2(C_{12}H_8N_2)] \cdot C_7H_6O_2$. In the crystal, the Pb^{II} ion is hexacoordinated by two N atoms from one 1,10phenanthroline ligand and four O atoms from two chelate benzoate anions. If the second benzoate ligand is treated as one coordination site, the overall coordination may be represented as a distorted pseudo-square pyramid. An intermolecular O-H···O hydrogen bond links the solvent benzoic acid molecule with a metal-coordinated benzoate ligand. The shortest Pb...Pb distance is 3.864 (4) Å, indicating a weak metal-metal interaction. Two complex molecules related by an inversion centre form dimeric units via Pb. . . O interactions of 3.206 (4) Å.

Related literature

For general background to the applications of complexes containing Pb(II) ions, see: Fan & Zhu (2006); Hamilton et al. (2004); Alvarado et al. (2005). For the use of aromatic carboxylates and the phenanthroline ligand in the preparation of metal complexes, see: Wang et al. (2006); Yang et al. (2010).

Experimental

Crystal data

 $[Pb(C_7H_5O_2)_2(C_{12}H_8N_2)] \cdot C_7H_6O_2$ $M_{-} = 751.73$ Triclinic, P1 a = 10.0725 (8) Å b = 10.5697 (8) Å c = 15.5477 (17) Å $\alpha = 93.414 \ (2)^{\circ}$ $\beta = 102.836 (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector	8277 measured reflections
diffractometer	5710 independent reflections
Absorption correction: multi-scan	4950 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.020$
$T_{\min} = 0.263, T_{\max} = 0.582$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 379 parameters $wR(F^2) = 0.074$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.02 $\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$ 5710 reflections

Table 1

Selected bond lengths (Å).

Pb1-O1	2.337 (3)	Pb1-N1	2.632 (4)
Pb1-O3	2.361 (4)	Pb1-O2	2.822 (3)
Pb1-N2	2.564 (3)	Pb1-O4	2.928 (4)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O5−H5···O2	0.82	1.94	2.654 (5)	145

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support by the Doctoral Foundation of Henan Polytechnic University (B2008–58 648265).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5413).

References

- Alvarado, R. J., Rosenberg, J. M., Andreu, A., Bryan, J. C., Chen, W.-Z., Ren, T. & Kavallieratos, K. (2005). *Inorg. Chem.* 44, 7951–7959.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, S. R. & Zhu, L. G. (2006). Inorg. Chem. 45, 7935-7942.
- Hamilton, B. H., Kelley, K. A., Wagler, T. A., Espe, M. P. & Ziegler, C. J. (2004). Inorg. Chem. 43, 50–56.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X. L., Qin, C. & Wang, E. B. (2006). Cryst. Growth Des. 6, 439-443.
- Yang, L., Li, B., Xue, Q., Huo, Y. & Wang, G. (2010). Acta Cryst. E66, m987.

Acta Cryst. (2010). E66, m1661-m1662 [doi:10.1107/S1600536810048725]

Bis(benzoato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)lead(II) benzoic acid monosolvate

J. Dai, J. Yang and J. Li

Comment

Complexes containing Pb(II) ions have recently attracted considerable interest not only because of the variety of their architectures, but also because of their potential applications, especially in environmental protection and in systems with different biological properties (Fan & Zhu, 2006; Hamilton *et al.*, 2004; Alvarado *et al.*, 2005). As an important family of bidentate O-donor ligands, aromatic carboxylates have been extensively employed in the preparation of metal complexes of various structural topologies (Wang *et al.*, 2006; Yang *et al.*, 2010).

The asymmetric unit of the title complex, $[Pb(C_7H_5O_2)_2(C_{12}H_8N_2)]$ • $(C_7H_6O_2)$, contains a Pb^{II} cation, two benzoate ligands, one 1,10-phenanthroline (phen) ligand and one free benzoic acid molecule, as illustrated in Fig.1. In the crystal, the Pb^{II} ion is hexacoordinated by two N atoms from one phen ligand and four O atoms from two chelate benzoate anions. The O atoms from one of carboxylate ligands (O3 and O4) are almost coplanar with the N atoms of the phen-ligand (N1 and N2)[dihedral angle of 10.49 (12)°]. Therefore, if we consider that the second carboxylate ligand occupies just one coordination site, the coordination environment of Pb^{II} ion may be described as pseudo-square-pyramidal. The intermolecular hydrogen bond exist between the carboxyl H atom of solvent benzoic acid and metal-coordinated carboxylate O atom. The inter-distance of Pb^{...}Pbⁱ [ⁱ 1 - *x*, 1 - *y*, 1 - *z*] is 3.864 (4) Å, indicating the weak metal-metal interaction. The complex molecules related by inversion center are organized into dimeric units *via* a pair of Pb^{...}O interactions of 3.206 (4) Å (Fig.2) and stacking inteactions between phen and benzoate ligands, with the shortest centroid–centroid distance between their planes of 3.521 (5) Å.

Experimental

A mixture of $Pb(CH_3COO)_2$ $^{\circ} 3H_2O$ (0.05 g, 0.13 mmol), benzoic acid (0.102 g, 0.84 mmol), 1,10-phenanthroline (0.083 g, 0.41 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The mixture was heated at 403 K for 6 days to give the colorless crystals suitable for X-ray diffraction analysis.

Refinement

All H atoms bound to C atoms were placed in calculated positions and treated in a riding-model approximation, with C—H = 0.93 Å and U_{iso} (H) = 1.2 U_{eq} (C). The carboxylic H atom was located in a difference Fourier map. Nevertheless, it was treated as riding with an idealized distance of O—H = 0.82 Å and U_{iso} (H) = 1.2 U_{eq} (O).

Figures

Fig. 1. The asymmetric unit of the title complex, showing displacement ellipsoids at the 30% probability level and the atom-labeling scheme. The H-bond is shown as dashed lines in blue.

Fig. 2. The dimer structure of complexes, formed by the weak intermolecular Pb…O interactions (dashed lines in violet).

Bis(benzoato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)lead(II) benzoic acid monosolvate

Crystal data	
$[Pb(C_7H_5O_2)_2(C_{12}H_8N_2)] \cdot C_7H_6O_2$	Z = 2
$M_r = 751.73$	F(000) = 732
Triclinic, <i>P</i> T	$D_{\rm x} = 1.784 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.0725 (8) Å	Cell parameters from 3689 reflections
b = 10.5697 (8) Å	$\theta = 1.4 - 26.5^{\circ}$
c = 15.5477 (17) Å	$\mu = 6.08 \text{ mm}^{-1}$
$\alpha = 93.414 \ (2)^{\circ}$	T = 296 K
$\beta = 102.836 \ (2)^{\circ}$	Prism, colorless
γ = 117.972 (1)°	$0.26 \times 0.18 \times 0.15 \text{ mm}$
$V = 1399.3 (2) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	5710 independent reflections
Radiation source: fine-focus sealed tube	4950 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.020$
ω scans	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -12 \rightarrow 12$
$T_{\min} = 0.263, T_{\max} = 0.582$	$k = -10 \rightarrow 13$
8277 measured reflections	$l = -15 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.074$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.038P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
5710 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
379 parameters	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pb1	0.595637 (19)	0.391099 (18)	0.465657 (12)	0.04103 (7)
01	0.7152 (4)	0.4830 (4)	0.3537 (2)	0.0547 (9)
O2	0.4876 (4)	0.4755 (4)	0.3081 (3)	0.0577 (9)
O3	0.8489 (4)	0.5402 (4)	0.5653 (3)	0.0659 (11)
O4	0.7626 (4)	0.6979 (4)	0.5547 (3)	0.0567 (9)
05	0.2159 (4)	0.3215 (4)	0.1819 (3)	0.0696 (11)
Н5	0.3118	0.3665	0.2014	0.084*
O6	0.1681 (6)	0.5034 (5)	0.1686 (4)	0.0944 (15)
N1	0.4405 (4)	0.1384 (4)	0.3537 (3)	0.0416 (9)
N2	0.7216 (4)	0.2286 (4)	0.4793 (3)	0.0393 (8)
C1	0.6176 (6)	0.5023 (5)	0.2969 (3)	0.0452 (11)
C2	0.6615 (5)	0.5607 (5)	0.2168 (3)	0.0424 (11)
C3	0.5676 (6)	0.5993 (5)	0.1582 (3)	0.0488 (12)
H3A	0.4771	0.5908	0.1695	0.059*
C4	0.6080 (7)	0.6507 (6)	0.0828 (4)	0.0582 (13)
H4A	0.5446	0.6765	0.0435	0.070*
C5	0.7400 (7)	0.6634 (6)	0.0660 (4)	0.0632 (15)
H5A	0.7654	0.6965	0.0147	0.076*
C6	0.8358 (7)	0.6282 (6)	0.1236 (4)	0.0607 (14)
H6A	0.9275	0.6402	0.1123	0.073*
C7	0.7965 (6)	0.5747 (6)	0.1985 (4)	0.0563 (13)
H7A	0.8602	0.5481	0.2367	0.068*
C8	0.8635 (6)	0.6642 (5)	0.5888 (3)	0.0444 (11)
С9	1.0096 (5)	0.7720 (5)	0.6587 (3)	0.0385 (10)
C10	1.0375 (6)	0.9115 (6)	0.6866 (3)	0.0482 (12)
H10A	0.9629	0.9374	0.6620	0.058*
C11	1.1724 (6)	1.0110 (6)	0.7493 (4)	0.0569 (13)
H11A	1.1885	1.1038	0.7675	0.068*
C12	1.2841 (6)	0.9756 (7)	0.7857 (4)	0.0644 (15)
H12A	1.3764	1.0442	0.8282	0.077*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C13	1.2596 (6)	0.8381 (7)	0.7592 (4)	0.0623 (15)
H13A	1.3351	0.8134	0.7842	0.075*
C14	1.1226 (6)	0.7364 (6)	0.6955 (3)	0.0484 (12)
H14A	1.1067	0.6437	0.6773	0.058*
C15	0.3050 (6)	0.0935 (6)	0.2932 (4)	0.0534 (13)
H15A	0.2721	0.1612	0.2819	0.064*
C16	0.2095 (6)	-0.0469 (6)	0.2458 (4)	0.0574 (14)
H16A	0.1150	-0.0730	0.2037	0.069*
C17	0.2566 (6)	-0.1472 (5)	0.2620 (3)	0.0504 (12)
H17A	0.1938	-0.2429	0.2306	0.060*
C18	0.3980 (5)	-0.1070 (5)	0.3252 (3)	0.0421 (10)
C19	0.4560 (6)	-0.2050 (5)	0.3430 (3)	0.0457 (11)
H19A	0.3956	-0.3019	0.3135	0.055*
C20	0.5954 (6)	-0.1606 (5)	0.4015 (3)	0.0452 (11)
H20A	0.6318	-0.2262	0.4111	0.054*
C21	0.6893 (5)	-0.0133 (5)	0.4495 (3)	0.0376 (10)
C22	0.8359 (6)	0.0362 (5)	0.5108 (3)	0.0451 (11)
H22A	0.8740	-0.0278	0.5224	0.054*
C23	0.9227 (6)	0.1780 (6)	0.5534 (4)	0.0524 (12)
H23A	1.0210	0.2123	0.5936	0.063*
C24	0.8615 (5)	0.2722 (5)	0.5357 (3)	0.0442 (11)
H24A	0.9218	0.3693	0.5649	0.053*
C25	0.6365 (5)	0.0866 (5)	0.4351 (3)	0.0355 (9)
C26	0.4878 (5)	0.0390 (5)	0.3695 (3)	0.0371 (10)
C27	0.1292 (6)	0.3771 (7)	0.1484 (4)	0.0581 (14)
C28	-0.0215 (6)	0.2676 (6)	0.0814 (4)	0.0506 (12)
C29	-0.1214 (8)	0.3134 (8)	0.0389 (5)	0.083 (2)
H29A	-0.0936	0.4112	0.0515	0.100*
C30	-0.2625 (9)	0.2159 (10)	-0.0223 (5)	0.102 (3)
H30A	-0.3299	0.2480	-0.0499	0.122*
C31	-0.3037 (8)	0.0742 (9)	-0.0426 (5)	0.089 (2)
H31A	-0.3990	0.0085	-0.0839	0.107*
C32	-0.2035 (9)	0.0287 (7)	-0.0015 (5)	0.084 (2)
H32A	-0.2310	-0.0688	-0.0155	0.100*
C33	-0.0624 (7)	0.1247 (6)	0.0603 (4)	0.0641 (15)
H33A	0.0048	0.0920	0.0875	0.077*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.03974 (10)	0.03631 (11)	0.05214 (12)	0.02321 (8)	0.01173 (8)	0.01013 (8)
O1	0.0413 (19)	0.064 (2)	0.061 (2)	0.0280 (17)	0.0112 (17)	0.0219 (18)
O2	0.045 (2)	0.068 (2)	0.066 (2)	0.0305 (18)	0.0171 (17)	0.0281 (19)
O3	0.058 (2)	0.042 (2)	0.085 (3)	0.0297 (18)	-0.011 (2)	-0.0138 (19)
O4	0.0458 (19)	0.050 (2)	0.068 (2)	0.0275 (17)	-0.0041 (17)	0.0032 (18)
O5	0.049 (2)	0.064 (2)	0.088 (3)	0.0263 (19)	0.005 (2)	0.028 (2)
O6	0.086 (3)	0.062 (3)	0.118 (4)	0.040 (3)	-0.007 (3)	-0.003 (3)
N1	0.038 (2)	0.040 (2)	0.046 (2)	0.0210 (18)	0.0070 (17)	0.0083 (18)

N2	0.041 (2)	0.040 (2)	0.045 (2)	0.0264 (18)	0.0130 (18)	0.0077 (17)
C1	0.041 (3)	0.032 (2)	0.053 (3)	0.015 (2)	0.006 (2)	0.004 (2)
C2	0.040 (2)	0.032 (2)	0.044 (3)	0.013 (2)	0.006 (2)	0.002 (2)
C3	0.045 (3)	0.041 (3)	0.053 (3)	0.018 (2)	0.010 (2)	0.008 (2)
C4	0.062 (3)	0.054 (3)	0.049 (3)	0.025 (3)	0.006 (3)	0.011 (3)
C5	0.074 (4)	0.047 (3)	0.056 (3)	0.018 (3)	0.024 (3)	0.006 (3)
C6	0.057 (3)	0.057 (3)	0.068 (4)	0.024 (3)	0.025 (3)	0.008 (3)
C7	0.050 (3)	0.049 (3)	0.070 (4)	0.024 (3)	0.017 (3)	0.010 (3)
C8	0.046 (3)	0.046 (3)	0.043 (3)	0.026 (2)	0.008 (2)	0.009 (2)
C9	0.035 (2)	0.035 (2)	0.041 (3)	0.0148 (19)	0.0085 (19)	0.006 (2)
C10	0.055 (3)	0.053 (3)	0.042 (3)	0.033 (3)	0.011 (2)	0.005 (2)
C11	0.058 (3)	0.045 (3)	0.052 (3)	0.017 (3)	0.011 (3)	-0.002 (2)
C12	0.046 (3)	0.067 (4)	0.051 (3)	0.010 (3)	0.007 (3)	-0.005 (3)
C13	0.046 (3)	0.089 (5)	0.053 (3)	0.037 (3)	0.008 (3)	0.015 (3)
C14	0.045 (3)	0.052 (3)	0.049 (3)	0.027 (2)	0.009 (2)	0.008 (2)
C15	0.047 (3)	0.050 (3)	0.067 (4)	0.029 (3)	0.009 (3)	0.021 (3)
C16	0.048 (3)	0.056 (3)	0.059 (3)	0.025 (3)	-0.001 (3)	0.007 (3)
C17	0.048 (3)	0.039 (3)	0.054 (3)	0.016 (2)	0.009 (2)	0.004 (2)
C18	0.039 (2)	0.040 (3)	0.048 (3)	0.019 (2)	0.015 (2)	0.010 (2)
C19	0.054 (3)	0.033 (2)	0.055 (3)	0.022 (2)	0.022 (2)	0.012 (2)
C20	0.055 (3)	0.041 (3)	0.056 (3)	0.031 (2)	0.027 (2)	0.016 (2)
C21	0.042 (2)	0.038 (2)	0.040 (2)	0.023 (2)	0.017 (2)	0.013 (2)
C22	0.046 (3)	0.049 (3)	0.053 (3)	0.033 (2)	0.016 (2)	0.016 (2)
C23	0.045 (3)	0.062 (3)	0.055 (3)	0.034 (3)	0.003 (2)	0.012 (3)
C24	0.043 (3)	0.046 (3)	0.044 (3)	0.024 (2)	0.009 (2)	0.009 (2)
C25	0.038 (2)	0.037 (2)	0.038 (2)	0.021 (2)	0.0147 (19)	0.0129 (19)
C26	0.037 (2)	0.038 (2)	0.039 (2)	0.020 (2)	0.0110 (19)	0.0096 (19)
C27	0.052 (3)	0.064 (4)	0.068 (4)	0.033 (3)	0.021 (3)	0.028 (3)
C28	0.051 (3)	0.060 (3)	0.053 (3)	0.035 (3)	0.019 (2)	0.014 (3)
C29	0.082 (5)	0.087 (5)	0.092 (5)	0.062 (4)	0.003 (4)	0.000 (4)
C30	0.083 (5)	0.118 (7)	0.108 (6)	0.071 (5)	-0.009 (5)	0.004 (5)
C31	0.061 (4)	0.100 (6)	0.076 (5)	0.029 (4)	-0.006 (3)	0.006 (4)
C32	0.087 (5)	0.059 (4)	0.084 (5)	0.025 (4)	0.012 (4)	0.011 (4)
C33	0.055 (3)	0.058 (4)	0.074 (4)	0.026 (3)	0.010 (3)	0.019 (3)

Geometric parameters (Å, °)

Pb1—O1	2.337 (3)	C12—H12A	0.9300
Pb1—O3	2.361 (4)	C13—C14	1.384 (7)
Pb1—N2	2.564 (3)	С13—Н13А	0.9300
Pb1—N1	2.632 (4)	C14—H14A	0.9300
Pb1—O2	2.822 (3)	C15—C16	1.373 (7)
Pb1—O4	2.928 (4)	C15—H15A	0.9300
O1—C1	1.269 (6)	C16—C17	1.365 (7)
O2—C1	1.259 (6)	C16—H16A	0.9300
O3—C8	1.269 (5)	C17—C18	1.391 (7)
O4—C8	1.250 (5)	C17—H17A	0.9300
O5—C27	1.303 (6)	C18—C26	1.401 (6)
O5—H5	0.8200	C18—C19	1.422 (6)

O6—C27	1.199 (6)	C19—C20	1.335 (7)
N1—C15	1.320 (6)	С19—Н19А	0.9300
N1—C26	1.356 (6)	C20—C21	1.429 (6)
N2—C24	1.327 (6)	C20—H20A	0.9300
N2—C25	1.367 (5)	C21—C22	1.397 (6)
C1—C2	1.485 (7)	C21—C25	1.397 (6)
C2—C3	1.384 (7)	C22—C23	1.359 (8)
C2—C7	1 393 (7)	C22—H22A	0.9300
C3—C4	1 384 (7)	C23—C24	1 407 (7)
С3—НЗА	0.9300	C23—H23A	0.9300
C4—C5	1 358 (8)	C24—H24A	0.9300
C4—H4A	0.9300	C25—C26	1 445 (6)
C5—C6	1 365 (8)	C27—C28	1 495 (8)
С5—Н5А	0.9300	C_{28} C_{33}	1 363 (7)
C6—C7	1 381 (8)	C28—C29	1.372 (8)
C6—H6A	0.9300	$C_{29} = C_{30}$	1.372(0) 1 377(10)
С7—Н7А	0.9300	C29—H29A	0.9300
C_{8}	1 488 (7)	C_{20} C_{31}	1 348 (10)
C9 - C14	1 380 (6)	C30_H30A	0.9300
C9 - C10	1 385 (6)	C_{31} C_{32}	1 365 (10)
	1 361 (7)	C31_H31A	0.9300
C10_H10A	0.9300	C32_C33	1 377 (9)
C_{11} C_{12}	1 366 (8)	C32—C33	0.9300
C11—H11A	0.9300	C32—H32A	0.9300
C12_C13	1 374 (8)	C55—1155A	0.7500
	1.57 + (0)	C0 C14 U144	110.0
O1 = PD1 = O3	84.82 (14)	C9—C14—H14A	119.9
OI-PDI-N2	88.82 (12)	C13C14H14A	119.9
O3—PDI—N2	/5.08 (11)	NI-CI5-CI6	124.2 (5)
OI-PbI-NI	85./1 (12)	NI-CIS-HISA	117.9
U3—Pb1—N1	137.85 (11)	CI6—CI5—HI5A	117.9
N2—Pb1—N1	63. /4 (12)		118.4 (5)
01—Pb1—02	49.51 (10)	CI/-CI6-HI6A	120.8
03—Pb1—02	121.87 (13)	C15C16H16A	120.8
N2—Pb1—O2	127.06 (11)	C16	120.3 (5)
NI—PbI—O2	79.89 (11)	C16—C17—H17A	119.8
CI-OI-Pbl	105.9 (3)	C18—C17—H17A	119.8
C1 = O2 = Pb1	83.1 (3)	C17 - C18 - C26	117.1 (4)
C8—O3—Pb1	107.8 (3)		123.0 (4)
C27—O5—H5	125.4	C26—C18—C19	119.8 (4)
C15—N1—C26	117.5 (4)	C20-C19-C18	121.2 (4)
CIS—NI—Pbl	123.7 (3)	C20—C19—H19A	119.4
C26—N1—Pb1	117.7 (3)	C18—C19—H19A	119.4
C24—N2—C25	117.8 (4)	C19—C20—C21	120.7 (4)
C24—N2—Pb1	122.2 (3)	С19—С20—Н20А	119.6
C25—N2—Pb1	119.5 (3)	C21—C20—H20A	119.6
02—C1—O1	121.4 (5)	C22—C21—C25	117.9 (4)
02	120.2 (4)	C22—C21—C20	121.9 (4)
01	118.4 (4)	C25—C21—C20	120.2 (4)
C3—C2—C7	118.8 (5)	C23—C22—C21	119.9 (4)

C3—C2—C1	120.7 (4)	C23—C22—H22A	120.1
C7—C2—C1	120.4 (4)	C21—C22—H22A	120.1
C2—C3—C4	120.1 (5)	C22—C23—C24	119.0 (5)
С2—С3—НЗА	119.9	С22—С23—Н23А	120.5
С4—С3—НЗА	119.9	C24—C23—H23A	120.5
C5—C4—C3	120.2 (5)	N2—C24—C23	122.9 (5)
C5—C4—H4A	119.9	N2—C24—H24A	118.6
C3—C4—H4A	119.9	C23—C24—H24A	118.6
C4—C5—C6	120.8 (5)	N2-C25-C21	122.5 (4)
C4—C5—H5A	119.6	N2-C25-C26	118.7 (4)
С6—С5—Н5А	119.6	C21—C25—C26	118.8 (4)
C5—C6—C7	120.0 (5)	N1-C26-C18	122.5 (4)
С5—С6—Н6А	120.0	N1—C26—C25	118.2 (4)
С7—С6—Н6А	120.0	C18—C26—C25	119.2 (4)
C6—C7—C2	120.0 (5)	O6—C27—O5	123.2 (6)
С6—С7—Н7А	120.0	O6—C27—C28	124.0 (5)
С2—С7—Н7А	120.0	O5—C27—C28	112.8 (5)
O4—C8—O3	122.7 (5)	C33—C28—C29	118.9 (6)
O4—C8—C9	120.2 (4)	C33—C28—C27	122.5 (5)
O3—C8—C9	117.0 (4)	C29—C28—C27	118.6 (5)
C14—C9—C10	118.4 (4)	C28—C29—C30	120.6 (6)
C14—C9—C8	120.5 (4)	С28—С29—Н29А	119.7
C10—C9—C8	121.0 (4)	С30—С29—Н29А	119.7
C11—C10—C9	121.1 (5)	C31—C30—C29	120.5 (7)
C11-C10-H10A	119.5	С31—С30—Н30А	119.7
C9—C10—H10A	119.5	С29—С30—Н30А	119.7
C10-C11-C12	120.4 (5)	C30—C31—C32	119.0 (7)
C10-C11-H11A	119.8	C30—C31—H31A	120.5
C12—C11—H11A	119.8	C32—C31—H31A	120.5
C11—C12—C13	119.7 (5)	C31—C32—C33	121.2 (7)
C11—C12—H12A	120.1	С31—С32—Н32А	119.4
C13—C12—H12A	120.1	С33—С32—Н32А	119.4
C12—C13—C14	120.1 (5)	C28—C33—C32	119.8 (6)
C12—C13—H13A	120.0	С28—С33—Н33А	120.1
C14—C13—H13A	120.0	С32—С33—Н33А	120.1
C9—C14—C13	120.2 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O5—H5…O2	0.82	1.94	2.654 (5)	145

